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A B S T R A C T

Understanding population dynamics is essential for implementing effective conservation and management of
coastal sharks. Fisheries-independent surveys can offer valuable information for such data-limited situations. A
12-year (2004–2015) standardized, shallow water longline survey was conducted monthly in the coastal waters
of Bimini, Bahamas. Each monthly survey comprised five longline sets, totaling 75 hooks, with a soak time of
24 h. A total of 770 sharks from nine species were caught over the course of the study, with tiger (Galeocerdo
cuvier), nurse (Ginglymostoma cirratum), blacktip (Carcharhinus limbatus) and lemon (Negaprion brevirostris) sharks
comprising 95% of the catch. The majority of tiger (87%), nurse (62%), blacktip (67%), and lemon (82%) sharks
were of immature lengths. A greater number of captured tiger (77%) and blacktip (66%) sharks were female,
while nurse (55%) and lemon sharks (73%) were predominantly male. Poisson generalized additive models were
used to analyze local abundance trends and examine how catch rates were influenced by year, month, location,
tide, hour of capture, and lunar cycle. Seasonal trends indicate greater catches of the nurse, blacktip and lemon
sharks during the summer months. Annual trends indicated relatively stable catch rates for the tiger, blacktip
and lemon shark. Nurse shark catch rates were highly variable during the survey. Results from this study im-
prove our understanding of the coastal shark assemblage in Bimini, Bahamas, and provide important local
abundance trend information that could be beneficial for conservation and regional assessments.

1. Introduction

Coastal waters are economically important and environmentally
variable habitats that support a diversity of fauna (Beck et al., 2001;
Harley et al., 2006). Sharks are important components of these dynamic
ecosystems. As predators, sharks can influence the equilibrium of an
ecosystem, often occupying high trophic levels and maintaining eco-
logical balance through direct (Heithaus et al., 2008) and indirect
(Simpfendorfer et al., 2001) effects. A scarcity of sharks to perform
these roles can have broad ecological consequences and possibly in-
crease mesopredator populations or create a trophic cascade (Shepherd
and Myers, 2005; Ferretti et al., 2010). Therefore, understanding which
species and life stages inhabit coastal areas is an important initial step

in conservation.
Many sharks are especially susceptible to anthropogenic pressures,

due to their late sexual maturity, long gestation periods and low fe-
cundity (Dulvy and Forrest, 2010). The close proximity of coastal
ecosystems to land increases risks associated with human accessibility
and activity. Coastal development can physically alter habitats
(Vitousek et al., 1997), prey availability (Knip et al., 2010), and reduce
shark survival rates (Jennings et al., 2008). Fishing can impact near-
shore ecosystems (Jackson et al., 2001) and shark populations (Stevens
et al., 2000). Sharks comprise a high proportion (as much as 94%) of
bycatch in pelagic fisheries (Mandelman et al., 2008), and can also
contribute significantly to landings by coastal fisheries (Ansell et al.,
1996; Castillo-Géniz et al., 1998). In the northwest Atlantic, the United
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States (U.S.) has an active commercial longline fishery that targets large
coastal sharks from Virginia to Florida, and throughout the Gulf of
Mexico (Hale et al., 2013). These shark species are currently managed
through a combination of quotas, catch limits, and fishing seasons in
U.S. waters (Atlantic States Marine Fisheries Commission, 2008).

With growing conservation concerns and a prevalent human fasci-
nation with sharks, interest in shark protection and conservation has
increased. Some U.S. states prohibit the catch of particular species
(Atlantic States Marine Fisheries Commission, 2008). In June 2011, The
Bahamas created a shark sanctuary covering 630,000 km2 of the
northwest Atlantic, protecting all shark species from fishing (Chapman
et al., 2013) and banned the import and export of all shark products.
However, even as conservation measures continue to increase, the im-
pacts of these management decisions are relatively unknown. As the
human population living in coastal areas is expected to increase
(Vitousek et al., 1997; DeMaster et al., 2001), it is important to un-
derstand the status of shark populations and the extent to which these
species use coastal waters. This understanding will be critical for ef-
fective conservation and management.

Inferences on the relative abundance of sharks in the northwest
Atlantic Ocean are available from a combination of fisheries-dependent
data sources (Campana et al., 2006; Baum and Blanchard, 2010) and
fisheries-independent surveys (Simpfendorfer et al., 2002; Kessel et al.,
2016). Stock assessments of sandbar (Carcharhinus plumbeus; southeast
data assessment review (SEDAR, 2006), dusky (Carcharhinus obscurus;
Cortés et al., 2006), great hammerhead (Sphyrna mokarran), scalloped
hammerhead (Sphyrna lewini), smooth hammerhead (Sphyrna zygaena;
Hayes et al., 2009; Jiao et al., 2009), bonnethead (Sphyrna tiburo) and
Atlantic sharpnose (Rhizoprionodon terraenovae; SEDAR, 2013) sharks
indicated suspected declines of 36–80% with respect to unexploited
population levels. In contrast, relative abundance trends from the same
region were stable with annual variability for sand tiger (Carcharias
taurus), bull (Carcharhinus leucas), tiger (Galeocerdo cuvier), spinner
(Carcharhinus brevipinna) and lemon sharks (Negaprion brevirostris;
Carlson et al., 2009, 2012; Kessel et al., 2016). Fisheries-dependent
data has resulted in disagreement regarding the status of many coastal
shark species in the northwest Atlantic (Baum et al., 2003; Burgess
et al., 2005). Stock assessments that include multiple sources of in-
formation (e.g., catch, life history, and abundance trends) are best for
determining species status (Maunder and Punt, 2013). However, when
data are limited, relative abundance trends alone can provide in-
formation to assess the effectiveness of management and conservation
decisions (Carruthers et al., 2014).

Although shark conservation measures have been implemented in
The Bahamas, population assessments for these species are lacking in
this part of the northwest Atlantic and, therefore, the efficacy of these
measures cannot be evaluated. The present study used a fisheries-in-
dependent longline survey to target coastal sharks in the near-shore
waters of the Bimini Islands, Bahamas, from 2004 to 2015. The man-
grove-fringed islands of North and South Bimini are biologically diverse
(Jennings et al., 2012) and a lemon shark nursery (Chapman et al.,
2009; Guttridge et al., 2012). Bimini is also part of the Bahamian shark
sanctuary. The objectives of this study were to: 1) determine the coastal
shark assemblage of Bimini, Bahamas; 2) quantify local relative abun-
dance trends; 3) evaluate the influence of abiotic factors on catch rates;
and 4) generate baseline data for future understanding of shark sanc-
tuary impacts.

2. Materials and methods

2.1. Study site

This study was conducted from January 2004 through December
2015 in the waters of Bimini, Bahamas (Fig. 1). The Bimini islands are
situated approximately 85 km east of Miami, Florida on the western
edge of the relatively shallow Great Bahama Banks (approximately

25 m maximum depth), east of the deep Straits of Florida (roughly
1200 m maximum depth). The two islands, North and South Bimini, are
separated by a shallow tidal lagoon (about 3 m maximum depth), ap-
proximately 21 km2 in area.

2.2. Sampling

Longlines modified for Bimini’s shallow water environment were
deployed monthly. For each survey, four longlines (A–D) were set at
fixed locations and one longline (WC) was set at a non-standardized
location, haphazardly chosen by the scientific staff, off of South Bimini
(Fig. 1). The bathymetry of the sample locations ranged from 1 to 4 m
in depth and the sea bed was relatively uniform consisting primarily of
sand, sea grass and rock substrate. All five longlines were set on the
same day, however day of deployment within each month varied
throughout the study. During the study longlines were set in sequential
order (i.e., A, B, C, D, WC), with the first line being set at 14:30 and the
last line being deployed around 16:30. All five longlines remained de-
ployed over a 24-h period and were hauled in the same order they were
set. Each longline was 500 m in length with 15 baited 16/0 circle hooks
distributed at 30 m intervals. Bait varied, but was composed primarily
(> 80%) of ½ kg pieces of barracuda (Sphyraena barracuda). Circle
hooks were selected to minimize the possibility of a shark being foul-
hooked in the throat or stomach and to increase catch retention
(Kerstetter and Graves, 2006). The gangion was designed specifically to
target shallow water (< 5 m depth) coastal sharks, with hooks posi-
tioned mid-water column below a small buoy that lifted the gangion
wire off the sea floor. In order to reduce mortality, longlines were vi-
sually checked every four hours and captured sharks were processed
and released. Clear water conditions allowed sharks to be identified and
captured without hauling the longlines.

On capture, sharks were identified and restrained. The gangion was
secured to the bow cleat of the vessel (5 m, center console skiff), and
separated from the mainline, allowing the vessel to drift away. The
shark was then brought under control with the use of a tail-rope and
secured to the stern cleat of the vessel. Capture location was recorded
(decimal degrees) with a Garmin GPSmap 62 s (± 3 m). A tape

Fig. 1. Satellite image of the study site, Bimini Bahamas; monthly placements of lines A-D
are marked accordingly, along with set locations (black dots) of the non-standardized
wild card (WC) line.
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measure was used to measure the total length (TL) of all sharks to the
nearest centimeter (cm). Recapture was determined if individuals had a
pre-existing National Marine Fisheries Service (NMFS) conventional tag
(Kohler et al., 1998) or a passive integrated transponder (PIT) tag
(Gruber et al., 2001). If the shark was not a recapture, a small incision
was made adjacent to the first dorsal fin and a PIT tag was injected into
the sub-dermal layer (Gruber et al., 2001; Destron Fearing Inc). Newly
captured sharks> 140 cm TL were also marked with a NMFS tag by
fixing a metal anchor into the musculature at the base of the dorsal fin
(Kohler et al., 1998). Physical characteristics were recorded (mating
scars, hook location, etc.) along with sex of each individual. Following
data collection the shark was released and the corresponding hook and
gangion were removed from the longline.

2.3. Abiotic factors

We examined the effects of abiotic factors, including tide, lunar
cycle, hour of capture and location on species-specific catch rates over
the course of the 12-year study. Capture times were compiled into four
categories based on tide: low, flood, high, and ebb. Captures were de-
termined to occur at low or high tide if they happened within one hour
either side of event. Historical lunar records were obtained from the
U.S. Naval Observatory (U.S. Naval Observator, 2016). Lunar cycle was
determined as day of capture from last new moon. Hour of capture was
determined by the check of longlines sharks were captured on. Location
was determined by whether sharks were caught in the lagoon opening
(i.e., lines A–D) or off South Bimini (i.e., WC).

2.4. Demographics

All statistical analyses were conducted in R (version 3.3.2) and
significance was determined at the 0.05 level. The following analyses
were performed on only the most abundant species (> 75 individuals)
caught during the 12-year survey. Total length size structure was
compared among species. Literature was reviewed to estimate whether
individuals were mature (Brown and Gruber, 1988; Randall, 1992;
Castro, 1996; Castro, 2000). Significant differences in size distribution
between males and females were tested with a two-sample Kolmogorov-
Smirnov test. Sex ratio was examined using a chi-square goodness-of-fit
test to determine if ratios deviated from 1:1. Size and sex ratios were
compared across month and year using a Kruskal-Wallis rank sum test.
If differences were found to be significant, a post-hoc procedure was
performed to investigate which months or years were significant. All
post-hoc calculations used the ‘pgirmess’ package (Giraudoux, 2011).

2.5. Modeling shark catch rates

Capture rates were modeled by longline check (i.e., every 4 h) to
avoid combining capture records and loss of information (Maunder and
Punt, 2004). Effort was standardized, because the amount of hooks (75)
and length of soak time (24 h) were the same for each monthly survey.
This allowed count data to be used to estimate local abundance indices.
Count data of shark captures can have a high amount of zero ob-
servations, because sharks are infrequently captured (Minami et al.,
2007). When the proportion of zeros is large, captures do not readily fit
standard distributions (i.e., Poisson or negative binomial). To deal with
this problem, multiple techniques have been developed, including zero
inflated distributions (Zuur and Ieno, 2012). However, a high propor-
tion of zeros does not always equate to zero inflation, and therefore it is
important to compare the fit of normal and zero-inflated distributions
(Warton, 2005).

Several approaches are available to model catch-rate series
(Maunder and Punt, 2004), with recent applications for sharks in-
cluding generalized additive models (GAMs) (Afonso et al., 2014; Kessel
et al., 2016). To determine the appropriate distribution of shark cap-
tures in Bimini, Bahamas, three GAMs were compared for each species:

Poisson, negative binomial, and zero inflated Poisson (ZIP). Poisson and
negative binomial models were constructed in the ‘mgcv’ package
(Wood, 2006), while ZIP models were built in the ‘gamlss’ package
(Rigby and Stasinopoulos, 2005). Poisson and negative binomial
models used a log-link function, while the ZIP model used a logit-link
function. Six covariates (year, month, tide, lunar cycle, hour of capture
and location) of longline catch were tested for each model. Co-linearity
of covariates was investigated using generalized variance-inflation
factor (GVIF) scores. Any covariate with a score greater than three was
removed and the GVIFs were recalculated (Zuur and Ieno, 2012). Re-
gardless of level of significance, year was kept in all models, because
the primary objective was to detect local relative abundance trends
over time (Maunder and Punt, 2004). A smoothing spline was used to
analyze the covariate year, while a cyclic smoothing spline (“cc”) was
used to examine month, and lunar cycle. Tide, hour and location were
all treated as factors.

The appropriate distribution was determined by model validation
and by comparing a dispersion parameter, which was calculated as the
sum of Pearson residuals divided by the sample size minus the number
of parameters (Zuur and Ieno, 2012). Once the appropriate distribution
was selected, second order Akaike information criterion (AICc) scores
chose the final covariates for each model. All AICc scores were calcu-
lated using the ‘MuMIn’ package (Barton, 2016). If AICc scores were
within two, the most parsimonious model was selected (Burnham and
Anderson, 2003). After AICc scores chose the optimal model P-values of
explanatory variables were examined to approximate level of sig-
nificance for each covariate (Zuur et al., 2009). The degree of
smoothing for each term was determined using cross validation (Wood,
2006; Zuur and Ieno, 2012). Model validation was conducted by ana-
lyzing diagnostic plots (i.e., QQ-plot, histogram of residuals, residuals
vs. linear predictors and observed vs. predicted values).

3. Results

From January 2004 through December 2015, a total of 144 longline
sets, with 10,800 circle hooks, caught 770 sharks representing nine
species. No teleost species were caught and it was rare if more than four
sharks were captured on a single longline. Tiger (32%), nurse
(Ginglymostoma cirratum) (29%), blacktip (23%) and lemon (11%)
sharks comprised the majority of the catch. Bull (2%) and Atlantic
sharpnose (2%) sharks were caught less frequently, while blacknose
(Carcharhinus acronotus, < 1%), great hammerhead (< 1%), and
Caribbean reef (Carcharhinus perezii, < 1%) sharks were rarely cap-
tured.

3.1. Demographics

Males comprised 23% of tiger shark captures and the sex ratio de-
viated significantly from a 1:1 ratio (p ≤ 0.05, X2 = 55.31, df = 1).
Tiger shark sex ratios did not significantly vary between months or
years of the survey. Mean size was not significantly different between
male and female tiger sharks. Among captured individuals, tiger sharks
had the largest average size ( =X 204 ± standard deviation 67 cm) and
size range (85–385 cm). Based on size, 23% of males and 10% of fe-
males were assumed to be mature (Fig. 2). Size of tiger sharks sig-
nificantly varied between months (X2 = 22.44, df = 11, p≤ 0.05). A
post-hoc comparison indicated significant (Diff.Obs = 71.59;
Diff.Cri = 69.19) differences in size between March ( =X 247 ± 65 cm)
and September ( =X 193 ± 55 cm; Fig. 3). Size of tiger sharks did not
significantly vary between years.

Males comprised 55% of nurse shark captures and the sex ratio did
not deviate significantly from a 1:1 ratio. Nurse shark sex ratios did not
significantly vary between months or years of the survey. Mean size was
not significantly different between male and female nurse sharks. Nurse
sharks had the second largest average size ( =X 190 ± 44 cm) third
largest average size range (70–251 cm). Based on size, 46% of males
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and 28% of females were assumed to be mature (Fig. 2). Size of nurse
sharks did not significantly vary between months. Annual variation in
size was significant (Diff.Obs = 76.21; Diff.Cri 71.37). A post-hoc com-
parison indicated a significant difference in mean size between 2006
( =X 207 ± 39 cm) and 2012 ( =X 170 ± 42 cm; Fig. 4).

Males comprised 34% of blacktip shark captures and the sex ratio
deviated significantly from a 1:1 ratio (X2 = 17.42, p ≤ 0.05, df = 1).
Blacktip shark sex ratios did not significantly vary between months or
years of the survey. Mean size was significantly different between male
and female blacktip sharks (D = 0.47, p ≤ 0.05), with more large
(> 150 cm TL) females (n = 57) than males (n = 5; Fig. 2). The
blacktip shark had the smallest average size (142 ± 18 cm) and size
range (108–179 cm). Based on size, 16% of males and 42% of females
were assumed to be mature (Fig. 2). Size of blacktip sharks did not
significantly vary between months or years of the survey.

Males comprised 73% of the lemon shark catch and the sex ratio
deviated significantly from a 1:1 ratio (X2 = 13.349, p ≤ 0.001
df = 1). Lemon shark sex ratios did not significantly vary between

months or years of the survey. Mean size was not significantly different
between male and female lemon sharks. The lemon shark had the third
largest average size ( =X 180 ± 18 cm) and second largest size range
(69–274). Based on size, 15% of males and 25% of females were as-
sumed to be mature (Fig. 2). Size of lemon sharks did not significantly
vary between months or years of the survey.

3.2. Catch rates

For all species, the dispersion parameter of Poisson GAMs was ap-
proximately one, revealing that Poisson was the appropriate distribu-
tion to model shark catch rates in Bimini. Final covariates and model
results (Tables 1–4; Table A1) varied for each species.

The catch rates for each dominant shark species appeared to change
over the time series, but these changes were only significant for the
nurse shark (Tables 1–4; Fig. 5). Tiger shark catch rates were lower than
average from 2008 to 2011 and subsequently higher than average from
2012 to 2015 (Fig. 5). Nurse shark catch rates varied annually, with

Fig. 2. Size distribution and frequency of sharks captured on
longlines in Bimini, Bahamas: (a) tiger shark, (b) nurse shark,
(c) blacktip shark and (d) lemon shark. The y-axis represents
the number of individuals and n is the total number of cap-
tures for each species. Symbols (♂ male/♀ female) and
corresponding lines represent predicted size at maturity for
each sex. N is the sample.

Fig. 3. Aggregated monthly size distribution of sharks cap-
tured on longlines in Bimini, Bahamas: (a) tiger shark, (b)
nurse shark, (c) blacktip shark and (d) lemon shark. The
boxes represent the first and third quartile, the black line
represents the median and the whiskers represent 1.5 times
the interquartile range. The circles represent outliers.

A.C. Hansell et al. Fisheries Research 197 (2018) 34–44

37



greater catch rates occurring in 2009 (Fig. 5). Blacktip shark captures
remained relatively stable, however the lowest catch rates were ob-
served in 2015 (Fig. 5). Lemon shark catch rates remained relatively
stable, however captures were higher than average in 2004 and 2012
(Fig. 5).

Other variables were found to significantly influence catch rates of
shark species in Bimini, Bahamas. The capture rates of nurse, blacktip,
and lemon sharks varied significantly with month (Tables 2–4; Fig. 6),
while hour of capture was significant for only nurse and blacktip sharks
with both species captured most frequently four hours into the longline
set (Tables 2 and 3; Fig. A1). The catch rate of tiger sharks was sig-
nificantly higher during a flood tide (Table 1; Fig. A1) and the location
of capture significantly influenced the catch rate of this species as well
as the blacktip and lemon shark (Table 1; 3–4). More tiger sharks were
caught off of South Bimini, while the majority of blacktip and lemon
sharks were captured in the lagoon opening (Table 1; 3–4).

4. Discussion

The status of shark populations remains largely unknown in The
Bahamas due to the lack of fisheries-independent data sources. In this
study, we used a 12-year longline survey to characterize the demo-
graphy and relative abundance of sharks in the near-shore waters of
Bimini, Bahamas. In these coastal waters, the tiger, nurse, blacktip and
lemon sharks comprised 95% of the catch. Although all life stages were
represented in the catch, most (> 50%) of the sharks were not mature
(Fig. 2). Catch rates varied for all four species, however increases and

decreases in catch rates may be attributed to other factors (e.g., the
environment and dynamics of the population) than local density
(Maunder et al., 2006). Given the broad distribution of these species in
The Bahamas and beyond, these catch rates do not likely reflect trends
in total population abundance, but they can be used to monitor local
relative abundance.

Our fisheries-independent survey in Bimini, Bahamas avoids issues
that have historically complicated fisheries dependent surveys such as
accounting for abiotic factors and the standardization of gear, vessel,
and fishing location. However, our survey naturally still has constraints.
Species that rarely inhabit the locations of our sets might be under-
represented. For example, using different fishing methods (polyball or
float fishing) outside the survey area, we captured and tagged more
than 30 great hammerhead sharks (Guttridge et al., 2017) and more
than 35 bull sharks since 2012. Further, Bimini has a well-established
site where great hammerhead, Caribbean reef and blacknose sharks are
frequently fed for ecotourism and, on any given dive, more than ten
individuals can be observed (Gruber pers. comm.). All four of these
species comprised less than 5% of the catch in this survey. The longline
gear used in Bimini, specifically hook size, may cause size-selectivity
and preclude the capture of many juvenile sharks. Bimini is a well
documented lemon shark nursery (Chapman et al., 2009; Guttridge
et al., 2012) and supports a substantial resident juvenile (defined
as< 90 cm TL) nurse shark population of at least 50 individuals
(Brewster, unpublished data). These smaller sharks were not well re-
presented in this particular survey. It is also possible larger, presumably
mature sharks were able to escape capture on occasion, as straightened

Fig. 4. Annual size distribution of sharks captured on long-
lines in Bimini, Bahamas: (a) tiger shark, (b) nurse shark, (c)
blacktip shark and (d) lemon shark. The boxes represent the
first and third quartile, the black line represents the median
and the whiskers represent 1.5 times the interquartile range.
The circles represent outliers.

Table 1
Results of final Poisson generalized additive model investigating the catch rates of tiger sharks in Bimini, Bahamas. Outcomes of smoothers include: covariate, effective degrees of freedom
(edf), reference degrees of freedom (ref.df), chi-squared value (X2), and p-value. Outcomes of factors include: covariate, level, coefficient, standard error (SE), z-value and p-value. Overall
adjusted R2 value, and total percent deviance explained are displayed as well.

Covariate edf ref.df X2 p-value R2 (adj.) % Deviance Exp.

Year 4.8 5.85 8.66 0.18 0.1 9.1
Month 1.3 8 2.29 0.11
Lunar Cycle 2.688 4 5.099 0.11
– Level Coefficient SE z-value –
Tide Intercept −1.44 0.17 −8.36 ≤0.05

Flood 0.44 0.2 2.2 ≤0.05
High 0.16 0.24 0.66 0.51
Ebb 0.11 0.21 0.54 0.59

Location South Bimini 1.08 0.46 2.34 ≤0.05
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hooks were observed during the haul of longlines. Bait type, retention
and size can influence the capture rate of sharks (Driggers et al., 2016).
Bait was not included in the abundance models in this study. However,
a previous longline study in Bimini found bait type does not affect the
catch rates of tiger, nurse, blacktip or lemon sharks (Kessel, 2010). Even
with these few limitations, our fisheries-independent survey in Bimini
addresses variation that complicates interpretation of fisheries-depen-
dent data, and provides an insight into tiger, nurse, blacktip and lemon
shark trends in this region of the northwest Atlantic.

4.1. Tiger shark

The tiger is classified by the International Union for the
Conservation of Nature (IUCN) as near threatened (Simpfendorfer,
2009) and in this study we observed higher than average capture rates
for this species during the latter years of the time series (Fig. 5). Similar
catch trends have been reported elsewhere for the tiger shark. For ex-
ample, in the northwest Atlantic catch rates have been reported as
stable (Baum and Blanchard, 2010) or even increasing (Carlson et al.,
2012). Off Australia, annual catch rates for tiger sharks have been re-
ported to fluctuate (Green et al., 2009; Holmes et al., 2012), with
certain years having increased capture rates (Reid et al., 2011).

The high catches of tiger sharks (87%) smaller than the published
size at maturity suggest that Bimini could act as a nursery for this
species. Pregnant tiger sharks have been observed in The Bahamas
(Sulikowski et al., 2016), with size at birth in the northwest Atlantic
occurring at roughly 61 cm fork length (Natanson et al., 1999). Juve-
niles have been defined as shorter than 180 cm fork length (Driggers
et al., 2008). In our study, we found that 33% of the tiger sharks caught
in Bimini were less than 236 cm TL (=180 cm FL). Natanson et al.
(1999) reported a tiger shark nursery off the coast of Florida in the
northwest Atlantic, out to a depth of 100 m. The shallow sand flats of
the Great Bahama Bank, adjacent to Bimini, are a potentially similar

shallow water habitat. However, more information is needed on the
spatial distribution of these species to determine whether or not this
area is indeed a nursery.

More tiger sharks were caught off South Bimini throughout the re-
search period than in the lagoon opening, which could be associated
with close proximity to the deep Gulf Stream (Table 1). Tiger shark
abundance has been positively correlated with depth (Carlson et al.,
2012), with individuals moving inshore to forage (Randall, 1992).
Further, edge habitats (such as the coastal waters of South Bimini) are
typically productive with a high abundance of prey and are commonly
used as foraging sites for top-level marine predators (Heithaus et al.,
2006; Papastamatiou et al., 2009). Thus, tiger sharks may be moving
from the deep Gulf Stream to the adjacent shallow flats off South Bimini
to feed.

We found that more tiger sharks were captured during a flood tide
in Bimini (Table 1; Fig. A1). However, the absence of hook timers
prevented fine scale evaluation. It should also be noted that tidal phases
were not of equal length in the abundance models, as high/low tide
were each two hours long and flood/ebb were each four hours long.
Tidally influenced movements in sharks are thought to relate to energy
conservation (Ackerman et al., 2000), foraging range (Carlisle and
Starr, 2010), and predator avoidance (Guttridge et al., 2012). Previous
catch rates of tiger sharks have been linked to tidal amplitude (Afonso
et al., 2014). Similarly, the movement of tiger shark prey (i.e., bar-
bellied sea snake (Hydrophis elegans)) has been suggested to be tidally
driven in order to reduce chances of predation (Kerford et al., 2008).
The intertidal lagoon and the near-shore waters off South Bimini are not
deep enough for tiger sharks during all tidal phases. Hence, tiger sharks
might be moving into these areas during rising tides to increase their
foraging range, especially since these locations have a high diversity of
prey (Jennings et al., 2012).

Table 2
Results of final Poisson generalized additive model investigating the catch rates of nurse sharks in Bimini, Bahamas. Outcomes of smoothers include: covariate, effective degrees of
freedom (edf), reference degrees of freedom (ref.df), chi-squared value (X2), and p-value. Outcomes of factors include: covariate, level, coefficient, standard error (SE), z-value and p-
value. Overall adjusted R2 value, and total percent deviance explained are displayed as well.

Covariate edf ref.df X2 p-value R2 (adj.) % Deviance Exp.

Year 8.37 8.89 34.44 ≤0.05 0.17 21.3
Month 7.41 8 35.97 ≤0.05
– Level Coefficient SE z-value –
Hour Intercept −0.57 0.11 −5.02 ≤0.05

8 −1.2 0.22 −5.40 ≤0.05
12 −1.09 0.21 −5.12 ≤0.05
16 −2.16 0.33 −6.47 ≤0.05
20 −0.93 0.20 −4.64 ≤0.05
24 −0.75 0.18 −3.97 ≤0.05

Table 3
Results of final Poisson generalized additive model investigating the catch rates of blacktip sharks in Bimini, Bahamas. Outcomes of smoothers include: covariate, effective degrees of
freedom (edf), reference degrees of freedom (ref.df), chi-squared value (X2), and p-value. Outcomes of factors include: covariate, level, coefficient, standard error (SE), z-value and p-
value. Overall adjusted R2 value, and total percent deviance explained are displayed as well.

Covariate edf ref.df X2 p-value R2 (adj.) % Deviance Exp.

Year 5.74 6.49 11.45 0.1 0.24 26.9
Month 2.7 6 22.49 ≤ 0.05
Lunar Cycle 0.55331 8 0.62 0.3
– Level Coefficient SE z-value –
Hour Intercept −0.63 0.17 −5.35 ≤0.05

8 −0.6 0.19 −3,23 ≤0.05
12 −1.46 0.25 −5.74 ≤0.05
16 −1.92 0.31 −6.22 ≤0.05
20 −1.92 0.31 −6.22 ≤0.05
24 −2.01 0.32 −6.26 ≤0.05

Location Intercept 1.08 0.46 2.34 ≤0.05
South Bimini −1.53 0.12 −13.18 ≤0.05
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4.2. Nurse shark

Catch rates from Bimini indicate the nurse shark is the second most
abundant species, with variable capture rates over the 12-year period
(Fig. 5). According to the IUCN the nurse shark is data deficient (Rosa
et al., 2006) and information on its distribution and habitat use is
limited (Ferreira et al., 2013). In the northwest Atlantic, nurse sharks
are considered a single population (Karl et al., 2012) and thought to be
the most abundant shark species in shallow tropical waters (Castro,
2000; Castro and Rosa, 2005). Although precise nurse shark population
estimates are lacking, a recent study from Atol das Rocas Marine Re-
serve, Brazil, found at least 400 individuals living in a 6 km2 area
(Castro and Rosa, 2005).

Previous abundance trends from the South Atlantic displayed no
seasonal trends in nurse shark presence (Santander-Neto et al., 2011;
Ferreira et al., 2013). However, strong seasonal shifts in sex ratios were
observed (Santander-Neto et al., 2011). In contrast, we found no sex
differences between seasons and catch rates increased over the summer
months (Fig. 6). The increase in seasonal catch rates in Bimini might be
a result of water temperature, as nurse shark captures have been po-
sitively correlated with water temperature (Heithaus et al., 2007).
Moreover, escalating water temperatures will increase metabolic de-
mand thereby requiring nurse sharks to forage more frequently (Di
Santo and Bennett, 2011), possibly increasing capture rates. It also
feasible that nurse sharks could be moving into the shallow waters
around Bimini during this time to reproduce (Castro, 2000; Pratt and
Carrier, 2001), as copulation events were directly observed by the au-
thors in the months of July and August.

Increased nurse shark captures were observed during the first four
hours of the study (Table 2; Fig. A1). Longline sets were temporally
standardized, therefore these increased catch rates could be influenced
by light levels. Shark foraging ecology has been linked to time of day,
with different species preferring to feed at different times (Randall,

Table 4
Results of final Poisson generalized additive model investigating the catch rates of lemon sharks in Bimini, Bahamas. Outcomes of smoothers include: covariate, effective degrees of
freedom (edf), reference degrees of freedom (ref.df), chi-squared value (X2), and p-value. Outcomes of factors include: covariate, level, coefficient, standard error (SE), z-value and p-
value. Overall adjusted R2 value, and total percent deviance explained are displayed as well.

Covariate edf ref.df X2 p-value R2 (adj.) % Deviance Exp.

Year 3.45 4.27 7.71 0.11 0.06 13.8
Month 2.39 8 26.73 ≤0.05
– Level Coefficient SE z-value –
Location Intercept −2.45 0.14 −17.36 ≤0.05

South Bimini −1.37 0.58 −2.35 ≤0.05

Fig. 5. Annual standardized relative abundance indices for
the: (a) tiger shark, (b) nurse shark, (c) blacktip shark and (d)
lemon shark. All sharks were caught in Bimini, Bahamas, and
all abundance estimates are based on final Poisson general-
ized additive models. Y-axis is number of individuals cap-
tured. Shaded grey areas represent ± two standard error.
Horizontal black line represents the average capture rate.

Fig. 6. Aggregated monthly standardized relative abundance indices for the: (a) nurse
shark, (b) blacktip shark and (c) lemon shark. All sharks were caught in Bimini, Bahamas,
and all abundance estimates are based on final Poisson generalized additive models. Y-
axis is number of individuals captured. Shaded grey areas represent ± two standard
error. Horizontal black line represents the average capture rate.
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1992; Heithaus, 2001; Castro, 2011). The nurse shark is a nocturnal
predator, which becomes active at dusk and moves into shallower water
(Castro, 2011). Thus, nurse sharks may prefer to feed in the shallow
coastal waters of Bimini during the early evening. It is also possible that
bait lost odor and ability to attract nurse sharks as time increase.

4.3. Blacktip shark

Catch trends from our survey found fairly consistent blacktip cap-
ture rates throughout the entire study period (Fig. 5). The blacktip
shark is classified, by the IUCN, as near threatened (Burgess and
Branstetter, 2009) and has genetically distinct sub-populations in the
Atlantic (Keeney and Heist, 2006). Despite Bimini’s close proximity
(85 km) to the U.S., blacktip sharks caught in Bimini are genetically
distinct from the U.S. population, and most closely related to nursery
sites in the Yucatan and Belize (Gledhill et al., 2015). This species is
currently managed in the U.S. as the Gulf of Mexico stock and the
northwest Atlantic stock (SEDAR, 2006). The former is not overfished
and overfishing is not occurring (SEDAR, 2006), but the status of
blacktip sharks in the northwest Atlantic remains unknown (Kiszka and
Heithaus, 2014).

Significantly more blacktip sharks were caught in the lagoon
opening than off of South Bimini (Table 3). This difference is potentially
the result of fishing effort, which was four times higher in the lagoon
opening. It is also possible that there are less blacktip sharks off South
Bimini due to the high presence of tiger sharks, a known predator
(Castro, 2011).

Seasonal captures indicate that more blacktip sharks were caught
during August and September (Fig. 6). We suggest that blacktips might
be using Bimini during this time for reproductive purposes as fresh
mating scars have been observed (Gledhill et al., 2015). It is also pos-
sible that blacktip sharks may be using near-shore waters for prey
availability (Kajiura and Tellman, 2016) or thermoregulation (Hight
and Lowe, 2007) during this time. September has the warmest water
temperatures of the year around Bimini, and blacktip shark movement
is strongly correlated with water temperature (Kajiura and Tellman,
2016). Further, the warm near-shore waters could augment metabolic
processes, digestion and somatic growth (Hight and Lowe, 2007;
Papastamatiou et al., 2015). Therefore, an increase in catch rates might
be due to reproduction, prey, physiological functions or a combination.

Hour of capture influenced the catch rate of blacktip sharks in
Bimini, with captures decreasing as deployment time increased
(Table 3; Fig. A1). In other regions of the northwest Atlantic blacktip
catch rates did not increase until 5–9 h into longline deployment
(Morgan and Carlson, 2010). In our study, it is unclear what factors are
causing blacktips to be captured more frequently at the beginning of
longline sets. However, these results are similar to those observed for
nurse sharks, and as previously mentioned this trend could be due to
either time of day or bait.

4.4. Lemon shark

Bimini, Bahamas is a well-documented lemon shark pupping ground
and nursery (Chapman et al., 2009; Guttridge et al., 2012) that con-
tributes to the near threatened (as classified by the IUCN; Sundström,
2015) western Atlantic population (Feldheim et al., 2001). In this study,
more lemon sharks were caught in the lagoon opening than off of South

Bimini, which is in accordance with previous tracking studies (Gruber
et al., 1988; Guttridge et al., 2012). From the results obtained by
Chapman et al. (2009)—investigating the probability, based on TL, of
sharks caught in Bimini being locally born—it can be estimated that
approximately 33% of lemon sharks captured on this survey were born
in Bimini. Female lemon sharks move into Bimini’s lagoon to give birth
during April-May (DiBattista et al., 2011). During these months our
survey found no significant differences in size or sex composition.
However, over the course of the summer months, lemon shark captures
did increase (Fig. 6). These findings are in accordance with an increased
presence of lemon sharks in the lagoon during the summer (Kessel et al.,
2013).

Lemon shark catch rates have been reported as both stable (Carlson
et al., 2012) and variable (Kessel et al., 2016) in the northwest Atlantic.
Stable catch rates were observed in this study (Fig. 5). It is important to
note that dredging and mangrove deforestation, due to resort devel-
opment, has occurred on Bimini’s North Island since 2001 (Jennings
et al., 2008). In Bimini’s North Sound, this anthropogenic disturbance
has resulted in habitat destruction, degradation, reduced community
complexity and reduced prey abundance of the juvenile lemon shark’s
preferred prey species yellowfin mojarra (Gerres cinereus, Jennings
et al., 2008). This has slowed growth for juveniles and negatively im-
pacted survival (Gruber and Parks 2002; Jennings et al., 2008).

4.5. Conclusion

With the current lack of relative abundance data and species-spe-
cific demography for sharks in The Bahamas, the current study used a
12-year fisheries-independent survey in Bimini, Bahamas to determine
the local demographics, local abundance trends and local abiotic factors
that influence the catch rates of tiger, nurse, blacktip and lemon sharks.
These abundance trends provide valuable baseline data for the eva-
luation of shark sanctuary impacts on local populations. The historic
abundance of tiger, nurse, blacktip and lemon sharks is relatively un-
known. However, in our study relative local abundance trends point to
variable nurse and stable tiger, blacktip and lemon shark catch rates. It
is important to not base the status of these species solely off this survey,
because more comprehensive and integrated stock assessment models
are the most robust analysis for understanding populations. However,
in the absence of these methods, local abundance trends can provide an
improved understanding of these data-limited species.
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